otr_logo_grey OntarioTechRacing.github.io

Circuits and Electronics


Table of Contents

1 Introduction

Recommended resources:

Online public textbooks: All About Circuits

(Paid) Textbook: Sedra Smith Microelectronic Circuits


2 Intro to Circuits and Electronics


3 Ohms Law

Quanity Symbol Unit of Measurement
Current I Ampere (A)
Voltage V Volt (V)
Resistance R Ohm (Ω)

4 KVL KCL

4.1 Kirchhoff’s Voltage Law (KVL)

4.1.1 In a Series Circuit
4.1.2 In a Parallel Circuit

4.2 Kirchhoff's Current Law (KCL)

4.2.1 In a Parallel Circuit

5 Common Circuitry

5.1 Voltage Divider

WIP.

5.2 Current Divider

WIP.

5.3 Delta Wye

WIP.


6 Node and Mesh Analysis

WIP.


7 Thevenin and Norton

Conversions:

7.1 Thevenin

Voltage source series to resistor.

7.2 Norton

Current source parallel to resistor.


8 Source transform

WIP.


9 Superposition

WIP.


10 Diodes

Shockley diode equation: $I_{D} = I_{S} \left( e^{\frac{V_{D}}{nV_{T}}} - 1 \right)$.

$n$ = Ideality / quality factor or emission coefficient.


11 Operational Amplifier (Op Amp)

11.1 Gain

Gain: $A = \frac{output}{input}$.

Voltage gain: $A_{v} = \frac{v_{output}}{v_{input}}$.


12 DC and AC Signal Analysis

12.1 DC Analysis

Important aspects to remember:

  1. Signal / AC sources are short.
  2. Coupling / decoupling / bypass capacitors are open.

12.2 AC (Small Signal) Analysis

Important aspects to remember:

  1. DC sources are short.
  2. Coupling / decoupling / bypass capacitors are short.
  3. Transistors (BJT, MOSFET, etc.) operate to their small signal model.
  4. Transistors require bias currents to find small signal model parameters.

13 Metal Oxide Field Effect Transistor (MOSFET)

For an ideal MOSFET, the gate current is essentially zero. The gate is insulated from the channel by a thin layer of oxide, and no direct current flows through the gate. This insulation makes the MOSFET a voltage-controlled device.

Therefore, the current relationship in an NMOS under normal operation, assuming no substrate (body) current, is $I_{D} = I_{S}$, since $I_{G} = 0$.

MOSFETs are driven by current as its control signal input.

13.1 Operating Mode / Response Region

NPN Configuration Input Control Signal Input Output
mosfet.png Drain Gate Source
Operating Mode Characteristics Application
Cutoff $v_{GS} < V_{t}$ Digital 0
Triode $v_{GD} > V_{t}$ or $v_{OV} > V_{DS}$ Digital 1
Saturation $v_{GD} \leq V_{t}$ or $v_{OV} \leq V_{DS}$ Amplifier

13.2 I-V Relationship

Operating Mode I-V relationship
Cutoff $i_{D} = 0$
Triode $i_{D} = k_{n}' \frac{W}{L} \left( \left( v_{GS} - V_{t} \right) v_{DS} - \frac{1}{2} v^{2}_{DS} \right)$
Saturation $i_{D} = \frac{1}{2} k_{n}' \frac{W}{L} \left( v_{GS} - V_{t} \right)^{2}$

13.3 Small Signal Analysis (AC)

Signal model parameters:

$g_{m} = \frac{2 I_{D}}{V_{OV}}$.

13.3.1 T Model & Hybrid Pi Model

Dependant current: $i_{D} = g_{m} v_{GS}$.

Resistance: $r_{o} = \infty$.

13.4 Amplifier Applications

Recall, the MOSFET must operate in saturation mode.

Common Source Common Source with Source Resistor Common Gate Common Drain
Model Hybrid Pi T T T
Input Gate Gate Source Gate
Output Drain Drain Drain Source
$R_{in}$ $\infty$ $\infty$ $g_{m}^{-1}$ $\infty$
$R_{out}$ $R_{D}$ $R_{D}$ $R_{D}$ $g_{m}^{-1}$
Voltage gain, $A_{v}$ $-g_{m} \left( R_{D} \vert \vert R_{L} \right)$ $\frac{-g_{m} \left( R_{D} \vert \vert R_{L} \right)}{1 + R_{S}} - \frac{R_{D} \vert \vert R_{L}}{g_{m}^{-1} R_{S}}$ $g_{m} \left( R_{D} \vert \vert R_{L} \right)$ $\frac{R_{L}}{g_{m}^{-1} + R_{L}}$

14 Bipolar Junction Transistor (BJT)

BJTs are driven by voltage as its control signal input.

14.1 Operating Mode / Response Region

NPN Configuration Input Control Signal Input Output
bjt.png Collector Base Emitter
Operating Mode EB Junction CB Junction Characteristics ~BE Voltage ~BC Voltage Application
Cutoff Reverse Reverse $V_{C} > V_{B}$ and $V_{E} > V_{B}$ $V_{BE} < 0.5 \ \mathrm{V}$ $V_{BC} < 0.4 \ \mathrm{V}$ Digital 0
Active Forward Reverse $V_{C} > V_{B} > V_{E}$ $V_{BE} = 0.7 \ \mathrm{V}$ $V_{BC} < 0.4 \ \mathrm{V}$ Amplifier
Saturation Forward Forward $v_{B} > V_{C}$ and $V_{B} > V_{E}$ $V_{BE} = 0.7 \ \mathrm{V}$ $V_{BC} > 0.4 \ \mathrm{V}$ Digital 1

14.2 Small Signal Analysis (AC)

Signal model parameters:

$g_{m} = \frac{I_{C}}{V_{T}}$.

14.2.1 T Model

Dependant current: $i_{C} = \alpha i_{E}$.

BE voltage: $v_{BE} = i_{E} r_{e}$.

Resistance: $r_{e} = \frac{\alpha}{g_m} = \frac{V_{T}}{I_{E}}$.

14.2.2 Pi Model

Dependant current: $i_{C} = \beta i_{B}$.

BE voltage: $v_{BE} = i_{B} r_{\pi}$.

Resistance: $r_{\pi} = \frac{\beta}{g_{m}} = \frac{V_{T}}{I_{B}}$.

14.3 Amplifier Applications

Recall, the BJT must operate in active mode.

Common Emitter Common Emitter with Emitter Resistor Common Base Common Collector / Emitter Follower
Circuit bjt amp ce.png bjt amp ce with re.png bjt amp cb.png bjt amp cc.png
Model Pi T T T
Input Base Base Emitter Base
Output Collector Collector Collector Emitter
$R_{in}$ $r_{\pi}$ $\left( 1 + \beta \right) \left( r_{e} + R_{E} \right)$ $r_{e}$ $\left( 1 + \beta \right) \left( r_{e} + R_{L} \right)$
$R_{out}$ $R_{C} = \frac{v_{o}}{i_{o}}$ $r_{e}$
Voltage gain, $A_{v_{o}}$ (no $R_{L}$) $-g_{m} R_{C} = \frac{- \alpha R_{C}}{r_{e}}$ $\frac{-g_{m} R_{C}}{1 + g_{m} R_{E}} = \frac{- \alpha R_{C}}{r_{e} + R_{E}}$ $g_{m} R_{C} = \frac{\alpha R_{C}}{r_{e}}$ 1
Voltage gain, $A_{v}$ with $R_{L}$ $A_{v_{o}}$ where $R_{C} \rightarrow \left( R_{C} \vert \vert R_{L} \right)$ $\frac{R_{L}}{R_{L} + r_{e}}$
Overall gain, $G_{v}$ $\frac{R_{in}}{R_{in} + R_{sig}} \times A_{v}$

Recommended video:


15 Negative Feedback Amplifier

The following information is more specific to BJT negative feedback amplifier circuits, however the main concepts carry over to other types of transistors.

Voltage Trans-conductance Current Trans-resistance
Input Voltage Voltage Current Current
Output Voltage Current Current Voltage
Topology Series-Shunt Series-Series Shunt-Series Shunt-Shunt
Feedback network $R_{1}$, $R_{2}$ fb amp voltage.png fb amp transcond.png fb amp transres.png fb amp voltage.png
Feedback factor $\beta$ $\frac{V_{f}}{V_{o}} \big\vert_{I_{1} = 0}$ $\frac{I_{f}}{V_{o}} \big\vert_{I_{1} = 0}$ $\frac{I_{f}}{I_{o}} \big\vert_{V_{1} = 0}$ $\frac{I_{f}}{V_{o}} \big\vert_{V_{1} = 0}$
Open loop gain $A$ Per amplifier stage based on $R_{i}$ & $R_{o}$
Feedback loop gain $A_{f}$ Total of amplifier stages' gain
Series Side Equation Shunt Side Equation
Feedback resistance, $R_{if}$ & $R_{of}$ $\left( 1 + A \beta \right) R_{\left( i \ \mathrm{or} \ o \right)}$ $\frac{R_{\left( i \ \mathrm{or} \ o \right)}}{ 1 + A \beta }$
Input output resistance $R_{i}$, $R_{o}$ (no $R_{L}$ & $R_{sig}$) $R_{ \left( i \ \mathrm{or} \ o \right) \ f} - R_{\left( sig \ \mathrm{or} \ L \right)}$ $\left( R_{ \left( i \ \mathrm{or} \ o \right) \ f}^{-1} - R_{\left( sig \ \mathrm{or} \ L \right)}^{-1} \right)^{-1}$

Recommended video: